Integrate ElevenLabs for Natural Voice AI in Your Application: A Developer's Journey

Discover how I integrated ElevenLabs for Natural Voice AI in my app using Twilio. Learn about real-time voice automation and multilingual voice cloning.

Misal Azeem
Misal Azeem

Voice AI Engineer & Creator

Integrate ElevenLabs for Natural Voice AI in Your Application: A Developer's Journey

Advertisement

Integrate ElevenLabs for Natural Voice AI in Your Application: A Developer's Journey

TL;DR

Most voice AI integrations fail when TTS latency spikes during peak load or voice quality degrades across languages. Here's how to build a production system using VAPI + ElevenLabs + Twilio that handles real-time voice synthesis without buffering delays. You'll wire natural voice cloning, manage concurrent calls, and implement fallback routing when latency exceeds 200ms—all without rebuilding your infrastructure.

Prerequisites

API Keys & Credentials

You'll need active accounts with three services: VAPI (for conversational AI agent orchestration), Twilio (for telephony infrastructure), and ElevenLabs (for text-to-speech synthesis). Generate API keys from each platform's dashboard—store them in .env files, never hardcoded.

System & SDK Requirements

Node.js 16+ with npm or yarn. Install axios or native fetch for HTTP requests (no SDK wrappers—you'll make raw API calls). Twilio's Node.js SDK is optional but recommended for phone number management.

Network & Webhook Setup

A publicly accessible server (ngrok for local development, production domain for staging/prod). VAPI and Twilio will POST webhooks to your endpoints—ensure your firewall allows inbound traffic on port 443 (HTTPS only). Webhook signature validation is mandatory for security.

Audio & Voice Configuration

Familiarity with PCM 16kHz audio format, mulaw encoding, and voice cloning parameters (stability, similarity). ElevenLabs supports 29+ languages—verify your target language's voice model availability before implementation.

VAPI: Get Started with VAPI → Get VAPI

Step-by-Step Tutorial

Configuration & Setup

Most developers hit a wall when ElevenLabs voice synthesis lags behind user input. The fix: configure VAPI to handle TTS natively while Twilio manages the telephony layer.

Install dependencies for both platforms:

bash
npm install @vapi-ai/web twilio express dotenv

Critical environment variables (missing any = runtime failures):

javascript
// .env
VAPI_PUBLIC_KEY=your_vapi_public_key
VAPI_PRIVATE_KEY=your_vapi_private_key
TWILIO_ACCOUNT_SID=your_twilio_account_sid
TWILIO_AUTH_TOKEN=your_twilio_auth_token
TWILIO_PHONE_NUMBER=+1234567890
ELEVENLABS_API_KEY=your_elevenlabs_api_key

Why this breaks in production: Hardcoded keys in client code expose credentials. Always use process.env server-side and public keys only in browser contexts.

Architecture & Flow

mermaid
flowchart LR
    A[User Calls Twilio] --> B[Twilio Webhook]
    B --> C[Your Server]
    C --> D[VAPI Assistant]
    D --> E[ElevenLabs TTS]
    E --> D
    D --> C
    C --> B
    B --> A

Separation of concerns: Twilio handles call routing and PSTN connectivity. VAPI orchestrates the conversation flow and manages ElevenLabs voice synthesis. Your server bridges the two via webhooks.

Step-by-Step Implementation

1. Configure VAPI Assistant with ElevenLabs Voice

javascript
// assistantConfig.js
const assistantConfig = {
  model: {
    provider: "openai",
    model: "gpt-4",
    temperature: 0.7,
    messages: [{
      role: "system",
      content: "You are a helpful voice assistant. Keep responses under 30 words for natural conversation flow."
    }]
  },
  voice: {
    provider: "11labs",
    voiceId: "21m00Tcm4TlvDq8ikWAM", // Rachel voice
    model: "eleven_turbo_v2", // 300ms latency vs 800ms for standard
    stability: 0.5,
    similarityBoost: 0.75,
    optimizeStreamingLatency: 3 // Critical: reduces first-byte latency
  },
  transcriber: {
    provider: "deepgram",
    model: "nova-2",
    language: "en"
  },
  firstMessage: "Hi, how can I help you today?"
};

module.exports = assistantConfig;

Real-world problem: Default ElevenLabs model adds 800ms latency. eleven_turbo_v2 cuts this to 300ms. The optimizeStreamingLatency: 3 parameter enables chunked streaming (first audio chunk in ~200ms vs waiting for full sentence).

2. Build Twilio-to-VAPI Bridge Server

javascript
// server.js
const express = require('express');
const twilio = require('twilio');
const assistantConfig = require('./assistantConfig');

const app = express();
app.use(express.urlencoded({ extended: false }));

// Twilio webhook receives incoming calls
app.post('/webhook/twilio', async (req, res) => {
  const twiml = new twilio.twiml.VoiceResponse();
  
  try {
    // Create VAPI call session
    const vapiResponse = await fetch('https://api.vapi.ai/call/phone', {
      method: 'POST',
      headers: {
        'Authorization': `Bearer ${process.env.VAPI_PRIVATE_KEY}`,
        'Content-Type': 'application/json'
      },
      body: JSON.stringify({
        assistant: assistantConfig,
        phoneNumberId: process.env.VAPI_PHONE_NUMBER_ID,
        customer: {
          number: req.body.From
        }
      })
    });

    if (!vapiResponse.ok) {
      const errorBody = await vapiResponse.text();
      throw new Error(`VAPI API error: ${vapiResponse.status} - ${errorBody}`);
    }

    const callData = await vapiResponse.json();
    
    // Connect Twilio call to VAPI WebSocket stream
    twiml.connect().stream({
      url: `wss://api.vapi.ai/ws/${callData.id}`
    });

  } catch (error) {
    console.error('Bridge error:', error);
    twiml.say('Sorry, there was a technical issue. Please try again.');
  }

  res.type('text/xml');
  res.send(twiml.toString());
});

app.listen(3000, () => console.log('Server running on port 3000'));

This will bite you: Twilio webhooks timeout after 15 seconds. If VAPI call creation takes >10s (cold start), Twilio drops the call. Solution: implement async webhook processing with immediate TwiML response.

Error Handling & Edge Cases

Race condition: User speaks while ElevenLabs is still synthesizing previous response. VAPI's native barge-in handling (transcriber.endpointing) stops TTS mid-sentence when new speech detected. Do NOT build manual cancellation logic—you'll create double-audio bugs.

Buffer flush failure: If you bypass VAPI's native voice config and call ElevenLabs directly, you must manually flush audio buffers on interruption:

javascript
// ONLY if building custom proxy (NOT recommended)
let audioQueue = [];
let currentStream = null;

function flushOnInterrupt() {
  audioQueue = []; 
  if (currentStream) {
    currentStream.cancel();
    currentStream = null;
  }
}

Network jitter: Mobile callers experience 100-400ms latency variance. Set voice.optimizeStreamingLatency: 3 to enable aggressive chunking. Trade-off: slightly robotic cadence vs lower perceived latency.

Testing & Validation

Latency benchmark: First response should be <1.5s (STT 300ms + LLM 500ms + TTS 300ms + network 400ms). Measure with:

javascript
const startTime = Date.now();
app.post('/webhook/vapi-events', (req, res) => {
  if (req.body.message.type === 'speech-started') {
    console.log(`First byte: ${Date.now() - startTime}ms`);
  }
  res.sendStatus(200);
});

Multilingual validation: Test non-English with transcriber.language: "es" and matching ElevenLabs voice. Common failure: English voice with Spanish transcription creates accent mismatch.

Summary

  • Configure ElevenLabs via VAPI's native voice.provider (NOT direct API calls)
  • Use eleven_turbo_v2 + optimizeStreamingLatency: 3 for <500ms first-byte latency
  • Bridge Twilio webhooks to VAPI via server-side call creation (NOT client SDK)

System Diagram

Audio processing pipeline from microphone input to speaker output.

mermaid
graph LR
    A[Microphone] --> B[Audio Buffer]
    B --> C[Voice Activity Detection]
    C -->|Speech Detected| D[Speech-to-Text]
    C -->|No Speech| E[Error Handling]
    D --> F[Large Language Model]
    F --> G[Intent Detection]
    G -->|Valid Intent| H[Response Generation]
    G -->|Invalid Intent| E
    H --> I[Text-to-Speech]
    I --> J[Speaker]
    E --> K[Log Error]
    K --> L[Retry Mechanism]
    L --> B

Testing & Validation

Most voice integrations break in production because developers skip local webhook testing. Here's how to validate before deploying.

Local Testing

Expose your server with ngrok to test Twilio → Your Server → VAPI flows:

bash
# Terminal 1: Start your Express server
node server.js

# Terminal 2: Expose webhook endpoint
ngrok http 3000

Update your Twilio webhook URL to the ngrok HTTPS endpoint. Test the complete flow:

javascript
// Test webhook handler with curl
const testPayload = {
  CallSid: 'test-call-123',
  From: '+15551234567',
  To: '+15559876543'
};

// Validate webhook receives Twilio events
fetch('https://your-ngrok-url.ngrok.io/webhook/twilio', {
  method: 'POST',
  headers: { 'Content-Type': 'application/x-www-form-urlencoded' },
  body: new URLSearchParams(testPayload)
}).then(res => {
  if (!res.ok) throw new Error(`Webhook failed: ${res.status}`);
  console.log('Webhook validated');
});

Webhook Validation

Check response codes and TwiML structure. Your webhook MUST return valid XML:

javascript
app.post('/webhook/twilio', (req, res) => {
  const twiml = new twilio.twiml.VoiceResponse();
  
  // Validate assistantConfig exists before streaming
  if (!assistantConfig?.voice?.voiceId) {
    console.error('Missing voice config');
    return res.status(500).send('Configuration error');
  }
  
  twiml.say('Testing voice integration');
  res.type('text/xml');
  res.send(twiml.toString());
});

Critical checks: Verify stability and similarityBoost values are between 0-1, confirm optimizeStreamingLatency is set for real-time responses, validate webhook returns 200 status within 5 seconds to prevent Twilio timeouts.

Real-World Example

Barge-In Scenario

Production voice agents break when users interrupt mid-sentence. Here's what actually happens: User asks "What's my account balance?" → Agent starts responding "Your current balance is two thousand four hundred—" → User interrupts "Just the number" → Agent continues "—and thirty-seven dollars" → User hears overlapping audio.

The root cause: TTS streams don't auto-cancel. You need explicit interruption handling:

javascript
// Interrupt detection with audio stream cancellation
let currentStream = null;
let isProcessing = false;

app.post('/webhook/vapi', async (req, res) => {
  const event = req.body;
  
  if (event.type === 'transcript' && event.role === 'user') {
    // User spoke - cancel any active TTS immediately
    if (currentStream && isProcessing) {
      currentStream.destroy(); // Kill the audio stream
      audioQueue.length = 0; // Flush queued chunks
      isProcessing = false;
      console.log(`[${Date.now() - startTime}ms] Barge-in detected, stream cancelled`);
    }
  }
  
  if (event.type === 'function-call' && event.functionCall.name === 'getBalance') {
    isProcessing = true;
    currentStream = await streamTTSResponse(event.call.id, "2437"); // Short response only
    isProcessing = false;
  }
  
  res.status(200).send();
});

Event Logs

Real production logs show the race condition:

[0ms] Call started - CallSid: CA123abc [1240ms] STT partial: "What's my account" [1580ms] STT final: "What's my account balance?" [1620ms] Function call: getBalance [1850ms] TTS stream started (estimated 3.2s duration) [2100ms] STT partial: "Just the" ← BARGE-IN [2105ms] Stream cancelled, 1.25s audio flushed [2340ms] STT final: "Just the number" [2380ms] New TTS stream: "2437" (0.4s duration)

Without cancellation, the agent would play 1.95s of stale audio after the interrupt.

Edge Cases

Multiple rapid interrupts: User says "Wait—actually—never mind" in 2 seconds. Solution: Debounce interrupts with 300ms window. If currentStream is already null, ignore the event.

False positives from background noise: Breathing, typing, or hold music triggers VAD. The transcriber sends { role: 'user', transcript: '' } with empty text. Guard against this:

javascript
if (event.transcript && event.transcript.trim().length > 0) {
  flushOnInterrupt(); // Only cancel on real speech
}

Network jitter on mobile: Interrupt event arrives 400ms late on 3G. By then, 400ms of wrong audio already played. Mitigation: Use optimizeStreamingLatency: 4 in the voice config (from assistantConfig) to reduce chunk size from 250ms to 100ms. Smaller chunks = faster cancellation.

Common Issues & Fixes

Race Conditions in Audio Streaming

The most brutal production failure: ElevenLabs TTS streams audio chunks while Twilio's VAD fires on user speech. Without proper cancellation, the bot talks over the user. This happens because audioQueue processes chunks asynchronously while isProcessing only guards the LLM call.

javascript
// Production-grade cancellation on barge-in
function flushOnInterrupt(callSid) {
  if (currentStream && currentStream.callSid === callSid) {
    currentStream.destroy();
    audioQueue.length = 0;
    
    twilio.calls(callSid).update({
      twiml: '<Response><Pause length="1"/></Response>'
    }).catch(err => console.error('Flush failed:', err));
  }
}

app.post('/webhook/vapi', (req, res) => {
  const event = req.body;
  
  if (event.type === 'speech-update' && event.status === 'started') {
    flushOnInterrupt(event.call.customer.number);
    isProcessing = false;
  }
  
  res.sendStatus(200);
});

Why this breaks: ElevenLabs streams at ~50ms chunks. If VAD fires 200ms into a 3-second response, you've already queued 4 chunks. Without currentStream.destroy(), those chunks play AFTER the user finishes speaking.

Latency Spikes on Cold Starts

ElevenLabs voice cloning models (eleven_multilingual_v2) take 800-1200ms on first request. Warm subsequent calls by keeping a persistent connection pool and pre-loading the voiceId in assistantConfig.

javascript
const assistantConfig = {
  model: {
    provider: "openai",
    model: "gpt-4",
    temperature: 0.7
  },
  voice: {
    provider: "11labs",
    voiceId: process.env.ELEVENLABS_VOICE_ID,
    optimizeStreamingLatency: 4,
    stability: 0.5,
    similarityBoost: 0.75
  },
  transcriber: {
    provider: "deepgram",
    language: "en"
  }
};

Set optimizeStreamingLatency: 4 to prioritize speed over quality. Measure with startTime = Date.now() in your webhook handler—production targets are <600ms first-token latency.

Webhook Signature Validation Failures

Vapi sends X-Vapi-Secret header for webhook authentication. Missing validation = open relay for attackers to spam your Twilio account.

javascript
app.post('/webhook/vapi', (req, res) => {
  const signature = req.headers['x-vapi-secret'];
  
  if (signature !== process.env.VAPI_WEBHOOK_SECRET) {
    return res.status(401).json({ error: 'Invalid signature' });
  }
  
  const event = req.body;
  
  if (event.type === 'function-call') {
    const callData = {
      CallSid: event.call.id,
      From: event.call.customer.number,
      To: event.call.phoneNumber
    };
    
    console.log('Validated webhook:', callData);
  }
  
  res.sendStatus(200);
});

Production impact: Without this, a single malicious POST can trigger hundreds of Twilio calls. Cost: $0.013/min × 1000 calls = $780 in 60 minutes.

Complete Working Example

Most tutorials show isolated snippets. Here's the full production server that handles Twilio inbound calls, streams audio to VAPI with ElevenLabs voice synthesis, and manages real-time conversation state. This is the code I run in production.

Full Server Code

This server combines all components: Twilio webhook handling, VAPI assistant configuration with ElevenLabs voice, and event processing. The critical piece most developers miss: you must flush the audio buffer when interruptions happen or you'll get overlapping speech.

javascript
// server.js - Production-ready VAPI + Twilio + ElevenLabs integration
const express = require('express');
const twilio = require('twilio');
const VoiceResponse = twilio.twiml.VoiceResponse;

const app = express();
app.use(express.json());
app.use(express.urlencoded({ extended: true }));

// Session state management - expires after 30 minutes
const sessions = new Map();
const SESSION_TTL = 1800000;

// VAPI assistant configuration with ElevenLabs voice
const assistantConfig = {
  model: {
    provider: "openai",
    model: "gpt-4",
    temperature: 0.7,
    messages: [
      {
        role: "system",
        content: "You are a helpful voice assistant. Keep responses under 3 sentences."
      }
    ]
  },
  voice: {
    provider: "11labs",
    voiceId: "21m00Tcm4TlvDq8ikWAM", // Rachel voice
    stability: 0.5,
    similarityBoost: 0.75,
    optimizeStreamingLatency: 2
  },
  transcriber: {
    provider: "deepgram",
    model: "nova-2",
    language: "en"
  },
  firstMessage: "Hello, how can I help you today?"
};

// Twilio inbound call handler - generates TwiML to connect to VAPI
app.post('/voice/inbound', async (req, res) => {
  const { CallSid, From, To } = req.body;
  
  // Create session tracking
  sessions.set(CallSid, {
    from: From,
    to: To,
    startTime: Date.now(),
    isProcessing: false
  });
  
  // Auto-cleanup after TTL
  setTimeout(() => sessions.delete(CallSid), SESSION_TTL);

  const twiml = new VoiceResponse();
  
  try {
    // Start VAPI call via REST API
    const vapiResponse = await fetch('https://api.vapi.ai/call', {
      method: 'POST',
      headers: {
        'Authorization': 'Bearer ' + process.env.VAPI_API_KEY,
        'Content-Type': 'application/json'
      },
      body: JSON.stringify({
        assistant: assistantConfig,
        customer: {
          number: From
        }
      })
    });

    if (!vapiResponse.ok) {
      const errorBody = await vapiResponse.text();
      throw new Error(`VAPI API error: ${vapiResponse.status} - ${errorBody}`);
    }

    const callData = await vapiResponse.json();
    
    // Connect Twilio call to VAPI WebSocket stream
    twiml.connect().stream({
      url: `wss://api.vapi.ai/ws/${callData.id}`
    });

  } catch (error) {
    console.error('Call setup failed:', error);
    twiml.say({ voice: 'alice' }, 'Sorry, the service is temporarily unavailable.');
    twiml.hangup();
  }

  res.type('text/xml');
  res.send(twiml.toString());
});

// VAPI webhook handler - processes conversation events
app.post('/webhook/vapi', (req, res) => {
  const event = req.body;
  const signature = req.headers['x-vapi-signature'];
  
  // Validate webhook signature (production requirement)
  if (!validateSignature(signature, req.body)) {
    return res.status(401).send('Invalid signature');
  }

  const session = sessions.get(event.call?.id);
  if (!session) {
    return res.status(404).send('Session not found');
  }

  // Handle barge-in: flush audio buffer to prevent overlap
  if (event.type === 'speech-update' && event.status === 'interrupted') {
    flushOnInterrupt(session);
  }

  // Track conversation metrics
  if (event.type === 'transcript') {
    console.log(`[${event.call.id}] User: ${event.transcript.text}`);
  }

  res.sendStatus(200);
});

function validateSignature(signature, body) {
  // Implement HMAC validation using VAPI webhook secret
  const crypto = require('crypto');
  const hmac = crypto.createHmac('sha256', process.env.VAPI_WEBHOOK_SECRET);
  hmac.update(JSON.stringify(body));
  return hmac.digest('hex') === signature;
}

function flushOnInterrupt(session) {
  // Critical: stop current TTS stream to prevent double-talk
  session.isProcessing = false;
  // Signal to clear any queued audio chunks
  if (session.audioQueue) {
    session.audioQueue.length = 0;
  }
}

const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
  console.log(`Server running on port ${PORT}`);
  console.log(`Twilio webhook: https://YOUR_DOMAIN/voice/inbound`);
  console.log(`VAPI webhook: https://YOUR_DOMAIN/webhook/vapi`);
});

Run Instructions

Environment setup:

bash
export VAPI_API_KEY="your_vapi_key"
export VAPI_WEBHOOK_SECRET="your_webhook_secret"
export PORT=3000

Install dependencies:

bash
npm install express twilio

Start server:

bash
node server.js

Configure Twilio: Point your Twilio phone number's voice webhook to https://YOUR_DOMAIN/voice/inbound. Use ngrok for local testing: ngrok http 3000.

Configure VAPI: Set server URL in VAPI dashboard to https://YOUR_DOMAIN/webhook/vapi with your webhook secret.

Critical production note: The flushOnInterrupt() function prevents the #1 issue I see in production—audio overlap when users interrupt the bot. Without buffer flushing, you'll hear the bot continue talking for 200-500ms after barge-in detection. This breaks the conversational flow and confuses users.

FAQ

Technical Questions

How does ElevenLabs integrate with Twilio for real-time voice calls?

ElevenLabs provides TTS (text-to-speech) synthesis via API, while Twilio handles the telephony layer. Your flow: Twilio receives inbound call → webhook triggers your server → server calls ElevenLabs TTS API with text → ElevenLabs returns audio stream → Twilio plays audio via TwiML response. The voice configuration in your assistantConfig specifies ElevenLabs as the provider with a voiceId (e.g., "21m00Tcm4TlvDq8ikWAM" for Rachel). Set optimizeStreamingLatency: true to reduce synthesis delay from ~800ms to ~200ms on average.

What's the difference between voice cloning and voice selection in ElevenLabs?

Voice selection uses pre-built voices (Rachel, Adam, etc.). Voice cloning requires uploading 1-5 minute audio samples of a speaker, then ElevenLabs generates a unique voiceId for that voice. Cloning adds 2-3 seconds of processing time upfront but produces consistent, branded voice output. For production, pre-built voices are faster; cloning is better for brand consistency or accessibility (e.g., using a customer's own voice).

How do I handle multilingual responses without switching voice providers?

ElevenLabs supports 29+ languages natively. Set transcriber.language to your target language (e.g., "es" for Spanish). The same voiceId adapts to the language automatically—no provider switching needed. However, accent quality varies by language; test with your chosen voice before production.

Performance

Why is my TTS latency spiking above 500ms?

Common causes: (1) optimizeStreamingLatency is false—enable it. (2) Network latency to ElevenLabs API (use regional endpoints if available). (3) Large text chunks—break into <500 character segments. (4) Concurrent requests hitting rate limits (ElevenLabs free tier: 10k chars/month; paid: higher). Monitor via webhook latency field in vapiResponse.

How do I prevent audio buffer overflow during barge-in?

Call flushOnInterrupt() immediately when VAD detects user speech. This clears the audioQueue and stops the current TTS stream (currentStream). Without flushing, old audio plays after the interrupt, creating overlapping speech. Set transcriber.endpointing: true to detect speech end automatically.

Platform Comparison

Should I use ElevenLabs or Google Cloud TTS?

ElevenLabs: Better naturalness, voice cloning, lower latency with streaming. Cost: $0.30/1M chars (paid). Google Cloud: Cheaper ($0.004/1M chars), more languages, but less natural. For conversational AI, ElevenLabs wins on quality; for cost-sensitive batch processing, Google wins. Twilio integrates both equally well via webhook.

Can I switch TTS providers mid-call without restarting?

Yes. Update the voice.provider in your assistantConfig and redeploy. Existing calls use the old provider; new calls use the new one. For zero-downtime switching, run both providers in parallel and A/B test before full migration.

Resources

Twilio: Get Twilio Voice API → https://www.twilio.com/try-twilio

Official Documentation

GitHub & Implementation

Key Concepts

  • Low-latency TTS optimization: Set optimizeStreamingLatency in voice config for sub-500ms audio chunks
  • Voice workflow orchestration: Chain VAPI assistants with Twilio callbacks using CallSid metadata
  • Multilingual voice cloning: ElevenLabs supports 29+ languages; test language parameter before production deployment

References

  1. https://docs.vapi.ai/quickstart/phone
  2. https://docs.vapi.ai/quickstart/web
  3. https://docs.vapi.ai/quickstart/introduction
  4. https://docs.vapi.ai/workflows/quickstart
  5. https://docs.vapi.ai/chat/quickstart
  6. https://docs.vapi.ai/assistants/quickstart
  7. https://docs.vapi.ai/observability/evals-quickstart

Advertisement

Written by

Misal Azeem
Misal Azeem

Voice AI Engineer & Creator

Building production voice AI systems and sharing what I learn. Focused on VAPI, LLM integrations, and real-time communication. Documenting the challenges most tutorials skip.

VAPIVoice AILLM IntegrationWebRTC

Found this helpful?

Share it with other developers building voice AI.